LINK EXCHANGE

joi, 6 octombrie 2016

Cum se formează diamantele?

Utilizați butonul de Translate din dreapta pagini pentru traducere.



Diamond is a metastable allotrope of carbon, where the carbon atoms are arranged in a variation of the face-centered cubic crystal structure called a diamond lattice. Diamond is less stable than graphite, but the conversion rate from diamond to graphite is negligible at standard conditions. Diamond is renowned as a material with superlative physical qualities, most of which originate from the strong covalent bonding between its atoms. In particular, diamond has the highest hardness and thermal conductivity of any bulk material. Those properties determine the major industrial application of diamond in cutting and polishing tools and the scientific applications in diamond knives and diamond anvil cells.

Because of its extremely rigid lattice, it can be contaminated by very few types of impurities, such as boron and nitrogen. Small amounts of defects or impurities (about one per million of lattice atoms) color diamond blue (boron), yellow (nitrogen), brown (lattice defects), green (radiation exposure), purple, pink, orange or red. Diamond also has relatively high optical dispersion (ability to disperse light of different colors).

Most natural diamonds are formed at high temperature and pressure at depths of 140 to 190 kilometers (87 to 118 mi) in the Earth’s mantle. Carbon-containing minerals provide the carbon source, and the growth occurs over periods from 1 billion to 3.3 billion years (25% to 75% of the age of the Earth). Diamonds are brought close to the Earth’s surface through deep volcanic eruptions by a magma, which cools into igneous rocks known as kimberlites and lamproites. Diamonds can also be produced synthetically in a HPHT method which approximately simulates the conditions in the Earth’s mantle. An alternative, and completely different growth technique is chemical vapor deposition (CVD). Several non-diamond materials, which include cubic zirconia and silicon carbide and are often called diamond simulants, resemble diamond in appearance and many properties. Special gemological techniques have been developed to distinguish natural diamonds, synthetic diamonds, and diamond simulants. The word is from the ancient Greek ἀδάμας – adámas “unbreakable”.


Diamond Formation

The formation of natural diamond requires very specific conditions—exposure of carbon-bearing materials to high pressure, ranging approximately between 45 and 60 kilobars (4.5 and 6 GPa), but at a comparatively low temperature range between approximately 900 and 1,300 °C (1,650 and 2,370 °F). These conditions are met in two places on Earth; in the lithospheric mantle below relatively stable continental plates, and at the site of a meteorite strike.


1-Earth’s Mantle “Cratons”

The conditions for diamond formation to happen in the lithospheric mantle occur at considerable depth corresponding to the requirements of temperature and pressure. These depths are estimated between 140 and 190 kilometers (87 and 118 mi) though occasionally diamonds have crystallized at depths about 300 km (190 mi). The rate at which temperature changes with increasing depth into the Earth varies greatly in different parts of the Earth. In particular, under oceanic plates the temperature rises more quickly with depth, beyond the range required for diamond formation at the depth required. The correct combination of temperature and pressure is only found in the thick, ancient, and stable parts of continental plates where regions of lithosphere known as cratons exist. Long residence in the cratonic lithosphere allows diamond crystals to grow larger.

Through studies of carbon isotope ratios (similar to the methodology used in carbon dating, except with the stable isotopes C-12 and C-13), it has been shown that the carbon found in diamonds comes from both inorganic and organic sources. Some diamonds, known as harzburgitic, are formed from inorganic carbon originally found deep in the Earth’s mantle. In contrast, eclogitic diamonds contain organic carbon from organic detritus that has been pushed down from the surface of the Earth’s crust through subduction (see plate tectonics) before transforming into diamond. These two different source of carbon have measurably different 13C:12C ratios. Diamonds that have come to the Earth’s surface are generally quite old, ranging from under 1 billion to 3.3 billion years old. This is 22% to 73% of the age of the Earth.

Diamonds occur most often as euhedral or rounded octahedra and twinned octahedra known as macles. As diamond’s crystal structure has a cubic arrangement of the atoms, they have many facets that belong to a cube, octahedron, rhombicosidodecahedron, tetrakis hexahedron or disdyakis dodecahedron. The crystals can have rounded off and unexpressive edges and can be elongated. Sometimes they are found grown together or form double “twinned” crystals at the surfaces of the octahedron. These different shapes and habits of some diamonds result from differing external circumstances. Diamonds (especially those with rounded crystal faces) are commonly found coated in nyf, an opaque gum-like skin.


2-Subduction Zones

Many important natural resources are derived from subduction processes. Oil and natural gas reserves, fresh, highly fertile soils, and gold, silver, uranium, and diamonds are all formed at convergent plate boundaries.

The presence of microdiamonds within rocks of continental affinity suggests that these rocks, despite their intrinsic buoyancy, were subducted into the upper mantle to a minimum depth of 150 km and subsequently exhumed to the earth’s surface. This discovery spurred unprecedented multidisciplinary investigations of continental collisions, mountain building, mantle enrichment in H2O, and rare earth and lithophile elements, including 40K, which has strong influence on the earth’s thermal evolution. The discovery of these microdiamonds, as well as coesite, triggered a major revision in understanding of deep subduction processes, leading to the realization that continental materials can be recycled into the earth’s interior, and establishing a new scientific discipline, ultra-high-pressure metamorphism.


3-Impact Sites “Asteroids”

Throughout the history of the earth, it has been frequently hit by huge asteroids. When these hypervelocity objects strike the earth with great force, it produces temperature that is hotter than the surface of the Sun and energy burst that is equal to millions of nuclear weapons.

These high pressure and temperature conditions that are produced in such an impact are very suitable for the formation of the diamonds. The tiny diamonds that are found around various asteroid impact sites support this theory of diamond formation.

Although such diamonds are rare to find and are not adequate for commercial use, but they still are the source of diamond material. The examples of these types of diamonds are the sub-millimeter, tiny diamonds that have been discovered in Arizona at Meteor Crater. Another diamonds are of 13 millimeters polycrystalline industrial diamonds that were found in Siberia, Russia at Popigai Crater.


4-Space

Not all diamonds found on Earth originated on Earth. Primitive interstellar meteorites were found to contain carbon possibly in the form of diamond. A type of diamond called carbonado that is found in South America and Africa may have been deposited there via an asteroid impact (not formed from the impact) about 3 billion years ago. These diamonds may have formed in the intrastellar environment, but as of 2008, there was no scientific consensus on how carbonado diamonds originated.

Diamonds can also form under other naturally occurring high-pressure conditions. Very small diamonds of micrometer and nanometer sizes, known as microdiamonds or nanodiamonds respectively, have been found in meteorite impact craters. Such impact events create shock zones of high pressure and temperature suitable for diamond formation. Impact-type microdiamonds can be used as an indicator of ancient impact craters. Popigai crater in Russia may have the world’s largest diamond deposit, estimated at trillions of carats, and formed by an asteroid impact.

Scientific evidence indicates that white dwarf stars have a core of crystallized carbon and oxygen nuclei. The largest of these found in the universe so far, BPM 37093, is located 50 light-years (4.7×1014 km) away in the constellation Centaurus. A news release from the Harvard-Smithsonian Center for Astrophysics described the 2,500-mile (4,000 km)-wide stellar core as a diamond.

Reference:
Wikipedia: Diamond
A look inside of diamond-forming media in deep subduction zones. DOI: 10.1073/pnas.0609161104
Monterey Institute for Technology and Education (MITE): Subduction Zones
University of Michigan: Meteorite Phenomenon – The Cratering Process Quantified



Sursa informaţiilor GeologyPage.

Niciun comentariu:

Trimiteți un comentariu